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Abstract: - In this paper, we use genetic algorithms (GAs), particle swarm optimization (PSO) and hybrid 
versions of them to solve university course timetabling problem (UCTP). A new crossover method called 2-
staged n-point crossover by combining classic n-point crossover method and graph colouring heuristics is 
introduced which aims to generate free-conflict offspring. The hybrid algorithms are generated by adding a 
local search (LS), based on hill climbing (HC) method, on three global search algorithms i.e. the GA, the PSO 
and a combination of them called GAPSO. The proposed algorithms such as hyper-heuristic systems, manage a 
set of graph colouring heuristics as low-level heuristics in a hyper-heuristic strategy. The proposed algorithms 
are examined by 11 well-known benchmark problems. Experimental results demonstrate that the GA 
outperforms the PSO and the GAPSO algorithms, but the hybrid GAPSO algorithm has a better performance 
than the hybrid GA and hybrid PSO. Also all hybrid algorithms obtain a better performance than their non-
hybrid competitors. However the GA has been widely applied to UCTP, to the best our knowledge the obtained 
results of GA in this paper are the first reported results on these databases which are competitive than results of 
other approaches. In a later part of the comparative experiments, a comparison of our proposed algorithms and 
14 other approaches reported in the literature confirms that by considering the hybrid GAPSO as a hybrid 
hyper-heuristic, it is one of the best strategies for the hyper-heuristic systems on the UCTP proposed so far. 
Also results of the hybrid GAPSO in comparison of other hybrid algorithms proposed in the literature are 
completely comparable. 
 
 
Key-Words: - Crossover, Genetic algorithm; Hybrid algorithm; Particle swarm optimization; University course 
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1 Introduction 
 
 
1.1 Course timetabling 
The timetabling problems are a subclass of 
scheduling problems, which usually are highly 
constrained, thus difficult to solve. Indeed, due to 
complexity of the real-world problems it is 
impossible to satisfy all of the constraints. 
Therefore, to find a practical solution, it is necessary 
to relax some of the constraints, which are called 

soft constraints. Hence constraints are divided into 
two classes: hard constraints and soft constraints. 
Satisfaction of all hard constraints is compulsory, 
otherwise the obtained solution is considered 
infeasible. On the other hand, satisfaction of soft 
constraints is desirable but not mandatory. In a 
university course timetabling problem (UCTP), a 
number of events (lectures, laboratories, exercises, 
etc) are assigned into a limited number of resources, 
i.e. locations (classrooms, laboratories, meeting 
halls), and timeslots within a week. The distinctive 
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features of this class of timetabling problems are 
that lectures have common students and that 
availability and size of rooms plays an important 
role. 
 
 
1.2 Literature review 
Timetabling are problems of time-based planning 
and combinatorial optimization which tend to be 
solved with a cooperation of stochastic search such 
as evolutionary algorithms (EAs) and heuristic 
methods such as sequential graph colouring 
heuristics. Conventional computer-based automated 
timetabling methods concern themselves simply to 
find the shortest timetable that satisfies all the hard 
constraints, commonly using a sequential graph 
colouring heuristics, and less navigate toward 
optimizing over a collection of soft constraints. This 
research concerns on combining two different 
approaches. The first approach is a heuristic 
approach involving graph coloring methods which 
usually lead to satisfactory and feasible solutions. 
The second approach is known as the EAs which 
usually lead to near optimal solutions and can be 
used as an optimization approach on soft 
constraints.  
Qu [1] divided the artificial intelligence approach 
applied on educational timetabling problem into six 
categories: traditional approaches, meta-heuristic 
methods, constraint logic techniques, knowledge-
based techniques, hyper-heuristic methods, and 
decomposition methods. Also Abdullah 2) divided 
the approaches applied on the UCTP into seven 
categories: constraint-based methods, graph-based 
approaches, population-based approaches, meta-
heuristic methods, case-based reasoning (CBR), 
knowledge-based and fuzzy-based approaches, 
multi-criteria approaches, and hyper-heuristic 
approaches. This research by considering recently 
applied methods on educational timetabling problem 
classifies approaches used to solve various 
components of the UCTP into eight categories: 
 
1.2.1 Clustering or decomposition methods 
The clustering methods usually solve timetabling 
problems in three phases. In the first phase, the set 
of events are divided into groups which collect 
events that will be scheduled into the same 
resources. In each group, events do not conflict with 
each other. The second phase attempts to reduce 
second-order conflicts, i.e. number of violations 
from soft constraints, by finding the optimal 
sequence of groups. Finally, the third stage is 
employed with the aim of improving the solution 
quality further. This is done by moving a particular 

event between resources such as by employing a HC 
[2]. [3-5] employed different clustering methods to 
solve the UCTP. 
 
1.2.2 Constraint-based approaches 
In a constraint-based approach, a set of variables 
with a given domain represents a problem. These 
approaches insert values to variables in such a way 
that all constraints of problem are fulfilled. 
Constraints are relations that are assumed to hold 
over variables and define the solutions space. 
Different variations of the logic programming 
language have been employed in the wide variety of 
constraint-based methods that have appeared in the 
literature (for example see [6-8]). 
 
1.2.3 Graph-based approaches 
Graph-colouring heuristics are often called 
sequential heuristics. The main idea is to assign 
events to resources, one by one, based on a 
sequencing strategy [9]. Timetabling problems, 
without considering of soft constraints, can be 
modeled as graph coloring problems. Graph 
coloring heuristics were widely used to solve the 
timetabling problems Burke et al. [10] reviewed the 
application of graph coloring methods to 
timetabling. The authors discussed various 
timetabling problems i.e. class/teacher, course, 
exam and sports timetabling. Their probe included 
the role that graph coloring methods have played in 
the timetabling literature over the last 40 years or so. 
The reported results in Carter et al. [11] 
demonstrated that sequential heuristics were very 
efficient when incorporating a backtracking 
procedure. Burke et al. [12] employed a heuristic 
procedure without backtracking but incorporated a 
random element and Asmuni et al. [13] proposed a 
fuzzy heuristic ordering. Burke and Newall [14] 
presented a method for solving examination 
timetabling problems through adaption of heuristic 
orderings as an alternative to existing forms of 
backtracking. Also some of literature used the graph 
coloring methods as low level heuristics in a hyper-
heuristic structure. Burke et al. [15] investigated a 
tabu search (TS) hyper-heuristic approach upon a 
set of graph colouring heuristics for university 
timetabling. Pillay et al. [16] proposed an alternative 
representation for heuristic combinations, namely, a 
hierarchical combination of heuristics. Those, 
meantime introducing of a new low-level heuristic 
called highest cost, combined the low-level 
heuristics hierarchically and applied simultaneously 
rather than sequentially.  
The graph colouring technique adapts well to small-
scale problems, however they fail to scale up for 
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larger ones [17]. Normally the real timetabling 
problem is a large-scale problem, so the timetabling 
problem solved by the graph colouring approach is 
still far from the real situations encountered in 
timetabling. 
 
1.2.4 Metaheuristics and EAs 
Compared to other approaches, the EAs, particularly 
hybrid versions of them, can be very successful in 
dealing with a variety of soft constraints and thus 
can generate high quality solutions. The EAs can 
mainly be divided to two distinct groups: point-
based or local search (LS) algorithms and 
population-based or global search algorithms. The 
LS algorithms explore the solution space by a 
gradual improvement of the current solution. 
Classical examples are hill climbing (HC), 
simulated annealing (SA), TS, variable 
neighbourhood search (VNS) and great deluge (GD) 
algorithm. In addition, global search EAs, such as 
genetic algorithms (GAs), ant colony algorithm 
(ACS) and memetic algorithms (MAs) perform the 
search by maintaining a population of candidate 
solutions. 
During the recent years, the various EAs have been 
intensively applied to solve timetabling problems. 
Burke et al. [18] described the use of a GA to solve 
timetabling problems and Ergül [19] implemented a 
university examination timetabling method based on 
a GA for the Middle East Technical University. 
Pillay and Banzhaf [20] presented the results of a 
study conducted to investigate the use of GAs as a 
means of inducing solutions to the examination 
timetabling problem. This method firstly took a two-
phased approach to the problem which focused on 
producing timetables that met the hard constraints 
during the first phase, while improvements were 
made to these timetables in the second phase so as 
to reduce the soft constraint costs. Secondly, domain 
specific knowledge in the form of heuristics was 
used to guide the evolutionary process.  
One of the most utilized algorithms for solving of 
the university timetabling problem is the TS 
algorithm. Hertz  [21] and White et al. [22] 
independently applied the TS algorithm to this 
problem. In Aladag et al. [23] two new 
neighborhood structures were proposed by using the 
moves called simple and swap and the effects of 
these moves on the operation of TS were examined 
based on defined neighborhood structures. Also 
among of other EAs, [24-28] used SA and [29-31] 
applied ACS to the university timetabling problems. 
A comparison among five metaheuristic approaches 
for the same eleven datasets was presented in Rossi-
Doria et al. [32]. These approaches include the 

ACS, the SA, random restart LS, the GA and the 
TS. A stochastic optimization timetabling tool 
(SOTT) has been developed for the UCTP in 
Pongcharoena et al. [33]. The GAs, the SA and 
random search were embedded in the SOTT. Landa-
Silva and Obit [34] proposed a modeled GD 
algorithm called Nonlinear Great Deluge (NLGD) 
by using a nonlinear decay of water level. In the 
original GD, the water level decreases steadily in a 
linear fashion but they proposed a modified version 
of the GD algorithm in which the decay rate of the 
water level was non-linear They successfully 
improved the performance of the GD algorithm on 
medium UCTP instances.  
Also Lewis [35]presented a survey of metaheuristic-
based techniques for university timetabling 
problems. Those subdivided the metaheuristic 
algorithms proposed for timetabling into three 
categories: One-stage optimization algorithms 
where a satisfaction of both the hard and soft 
constraints is attempted simultaneously. Two-stage 
optimization algorithms where a satisfaction of the 
soft constraints is attempted only once a feasible 
timetable has been found. Algorithms that allow 
relaxations where violations of the hard constraints 
are disallowed from the outset by relaxing some 
other feature of the problem, and attempts are then 
made to try and satisfy the soft constraints, whilst 
also giving consideration to the task of eliminating 
these relaxations. 
 
1.2.5 Knowledge-Based techniques and CBR 
The overall objective of using knowledge-based 
techniques for timetabling is to model the human 
knowledge for timetabling. Kong and Kwok [36] 
implemented a conceptual model of a knowledge-
based timetabling system for high school 
timetabling. Foulds and Johnson [37] developed a 
database decision support system for a real world 
course timetabling problem.  
All the existing knowledge-based techniques on 
timetabling use expert system, which models the 
knowledge of timetabling as rules, to generate 
course timetables. One possible problem with this is 
that usually the knowledge within the scheduling is 
implicit thus difficult to be modeled. This may be 
resolved by either the careful design of specific 
problems, or by employing techniques that can use 
the knowledge and avoid large amounts of work in 
modeling it. The CBR can be considered one of the 
solutions for this problem [1]. The CBR is an 
artificial intelligence technique that is supported by 
the study of cognitive science. It is motivated by the 
observation that humans use past experience to 
solve similar problems and reuse that experience 
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with some modification to suit different 
requirements [38]. [39] and [40] used the CBR to 
solve timetabling problems. 
 
1.2.6 Hyper-Heuristics techniques 
Burke et al. [41] defined a hyper-heuristic as ‘the 
process of using (meta-) heuristics to choose (meta) 
heuristics to solve the problem in hand’. Unlike 
most implementation of meta-heuristics that modify 
solutions directly, a hyper-heuristic modifies 
solutions indirectly by employing the selected low-
level heuristics. A hyper-heuristic operates on the 
search space of heuristics rather than on the search 
space of candidate solutions (see 15) and 16)). Qu 
and Burke [42] investigated the effect of employing 
different high-level search algorithms (i.e. steepest 
descent, TS, iterated LS and VNS) in the unified 
graph based hyper-heuristic framework. 
Experimental results demonstrated that the method 
of search by different high-level heuristics within 
the search space of graph heuristics was not crucial. 
The characteristics of the neighbourhood structures 
and search space were analyzed. It was shown that 
the exploration over the large solution space enabled 
the approach to obtain good results on both the 
exam and course timetabling problems. 
 
1.2.7 Fuzzy-based approaches 
Asmuni et al. [13], [43] and [44] investigated the 
fuzzy-based approaches on timetabling problems. 
Asmuni et al. [43] and [44] discussed how fuzzy 
techniques could be used to combine multiple 
standard heuristics to construct educational 
timetables. Petrovic et al. [45] considered fuzzy 
constraint satisfaction in timetabling problems. 
Chaudhuri and De [46] presented a fuzzy genetic 
heuristic algorithm to solve the UCTP. 
 
1.2.8 Artificial neural networks 
Artificial neural networks have recently proven to 
be relatively successful in solving complex 
combinatorial optimization problems (see [47] and 
[48]). 
In addition to these methods, some approaches have 
been applied for the educational timetabling 
problems which rarely utilized in other literature. 
These include integer programming [49] and [50], 
VNS [51] and randomized iterative improvement 
[52]. For more details about applied approaches on 
timetabling problems see [53-56]. 
 
 
1.3 The hybrid EAs vs timetabling 
The reported results of applying the GA on 
timetabling problem show that the original GA can 

not find a solution with good quality [57] and [58]. 
Thus a combination of GA with other algorithms 
usually has been used to improve the quality of 
obtained timetables. On the other part, the 
hybridizing with a LS technique is an efficient 
approach to improve the quality of original EA. 
Burke et al. [59] employed a MA that was combined 
a GA and a HC for university examination 
timetabling. Merlot et al. [60] implemented the 
hybridization between constraint programming to 
obtain a feasible initial timetable and LS to improve 
those of initial solutions. Azimi [61] presented three 
hybrid combinations of the TS and the ACS for a 
classical examination timetabling problem. In each 
hybrid algorithm, the TS or the ACS was considered 
as main algorithm and another algorithm was used 
in the LS part of it. Chiarandini et al. [62] presented 
a hybrid algorithm for the UCTP by combining 
various construction heuristics, the TS, variable 
neighbourhood descent and the SA. The LS and TS 
procedures were used for solving the hard 
constraints, while a timetable was improved in terms 
of soft constraints by means of variable 
neighbourhood descent and SA. 
Yang, and Jat [63] investigated the GAs with a 
guided search strategy and LS techniques for the 
UCTP. The guided search strategy was used to 
create offspring into the population based on a data 
structure that stored information extracted from 
good individuals of previous generations. The LS 
techniques used their exploitive search ability to 
improve the search efficiency of the proposed GAs 
and the quality of individuals. The experimental 
results showed that the proposed GAs were able to 
produce promising results for the UCTP. Abdullah 
and Turabieh [64] proposed a GA with sequential 
LS, called GAWLS. They tested a GA with a repair 
function and LS on the UCTP. Since combinations 
of evolutionary based approaches with LS have 
provided very good results for a variety of 
scheduling problems, Abdullh et al [65] proposed 
such an algorithm for the UCTP. Their evolutionary 
method did not use a crossover operator. After 
applying the mutation operator on %20 of the 
courses from each selected individual, the LS 
component was employed. This hybrid evolutionary 
approach was tested over established datasets and 
compared against state-of-the-art techniques from 
the literature. The results obtained confirmed that 
the approach was able to produce solutions to the 
UCTP which exhibited some of the lowest penalty 
values in the literature on benchmark problems. It 
was therefore concluded that the hybrid 
evolutionary approach represented a particularly 
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effective methodology for producing high quality 
solutions to the UCTP.  
Rossi-Doria et al. [32] proposed a hybrid GA. They 
used a LS method with the GA to solve the UCTP 
and also compared several meta-heuristics methods 
i.e. EAs, ant colony optimization, iterated LS, SA, 
and TS on the UCTP. To attempt fairness, the 
implementations of all the algorithms used a 
common solution representation, and a common 
neighbourhood structure or LS. The results showed 
that no meta-heuristic was best on all the 
timetabling instances considered. Jat and Yang [66] 
presented a MA that integrated two LS methods into 
the GA for solving the UCTP. These two LS 
methods used their exploitive search ability to 
improve the explorative search ability of GAs. The 
first LS worked on all events by supposing that each 
event was involved in soft and hard constraint 
violations. When the first LS finished, they got a 
possibly improved and feasible individual. After 
that, they applied the second LS on the current 
individual. The second LS could enhance the 
individuals of the population and increase the 
quality of the feasible timetable by reducing the 
number of constraint violations. The experimental 
results indicated that the proposed MA was efficient 
for solving the UCTP.  
In this research, the GA, particle swarm 
optimization (PSO) and a combination of them are 
used as global search optimization algorithms to 
solve the UCTP. In order to use beneficiary of 
hybrid schemes, the aforementioned EAs are 
combined with a LS i.e. HC method. Also a new 
crossover operator which enhances with graph-
based heuristics is proposed. The algorithms 
proposed in this research, because of employing the 
EAs to arrange the graph-based heuristics, as well as 
can be considered as hyper-heuristics systems. The 
rest of the paper is organized as follows. In section 
2, course timetabling problem are briefly explained. 
In section 3, the graph colouring heuristics are 
described. In section 4, the GA, the PSO, the 
utilized LS and the method of hybridizing are 
explained. The simulation results are presented and 
analyzed in section 5. Section 6 concludes the paper. 
 
 
2 The UCTP 
UCTP consists of a set of courses to be assigned in a 
set of timeslots and a set of rooms in which courses 
can take place within a week. The solution of this 
problem must satisfy all of hard constraints without 
any violation, whereas it can necessarily violate 
from some of soft constraints. Proportion of 

violation of soft constraints in this problem, 
measures the solution quality.  
Because several university course timetabling 
papers proposed in the literature applied their 
approach to the problem instances described in 
Socha et al. [29], this paper also is focused on this 
proposed UCTP. [29] proposed the following hard 
constraints: 

I.No student can be assigned to more than one 
course at the same time. 

II.The room should satisfy the features required 
by the course. 

III.The number of students attending the course 
should be less than or equal to the capacity of 
the room. 

IV.No more than one course is allowed at a 
timeslot in each room. 

Also the following soft constraints were presented: 
I.A student has a course scheduled in the last 

timeslot of the day. 
II.A student has more than 2 consecutive 

courses. 
III.A student has a single course on a day. 

The problem consists of a set of N  courses, 
1 2 3{ , , ,..., }NC c c c c= , T  timeslots, 

1 2 3{ , , ,..., }TTS t t t t=  (a given number of work days 
and a given number of timeslots in every day), a set 
of R  rooms in which events can take place, a set of 
F  room features satisfied by rooms and required by 
events and a set of M  students who attend the 
events. Thus the objective function of this problem 
can be considered as (1). This cost function simply 
counts the number of violations of the obtained 
solution from hard and soft constraints. It is a 
penalty function of weighted sum of violations.  

4 3

1 1
. * *i i j j

i j
C F w HC w SC

= =

= +∑ ∑    (1) 

where iHC  and jSC  denote number of violations 
from i th hard constraint and j th soft constraint, 
respectively. iw  and jw  are penalty weighting 
associated with i th hard constraints and j th soft 
constraints, respectively. Also to satisfy the requests 
of hard constraints, values of iw  and jw  are set 
equal to 10 and 1 for all hard and soft constraints, 
respectively. Lewis [35] mentioned two main 
advantages for this sort of linear weighted cost 
function. First, because the aim is to simply search 
for a candidate solution that minimizes a single cost 
function, it can, of course, be used with any 
reasonable optimization technique. Second, this 
approach is, in general, very flexible and easy to 
implement, because any sensible constraint can be 
incorporated into the problem provided that an 
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appropriate penalty weighting (which indicates its 
relative importance compared to others) is 
stipulated. In particular, this second factor is highly 
convenient for timetabling problems where we can 
often encounter an abundance of different constraint 
combinations in practice. 
 
 
3 Graph Colouring Heuristics 
Graph colouring is concerned with colouring the 
vertices of a given graph using a given number of 
colors. The relationship of graph colouring problem 
and timetabling is widely discussed in the literature 
(see [15], [67] and [68]). In the graph-based 
structure for the timetabling problem, events, 
timeslots, and conflicts are modeled by vertices, 
colors, and edges, respectively. The difficulty of 
events called as the degree of vertices, is 
represented by the number of conflicts those have 
with the others. A conflict between two events in 
timetabling problem exhibits at least existence of a 
same student. So these two events must not be 
scheduled in a same timeslot. The graph colouring 
heuristics can be used to construct a new timetable 
or to perfect incomplete timetables.  
The principle idea behind using graph colouring 
heuristics in the timetabling problems is to order the 
events, one by one, based on their difficulties of 
scheduling and to assign consecutively them into 
feasible timeslot and room. It is obvious, in the early 
stages of scheduling there are more feasible 
timeslots to assign those of difficult events. Various 
graph colouring heuristics assign different difficulty 
degree for a same event in a considered timetable. 
Some sequential graph colouring heuristics are as 
follow: 
Largest degree (LD): courses with the largest 
number of conflict with other courses are scheduled 
first.  
Largest enrolment (LE): courses with the largest 
number of student enrolment are scheduled first.  
Largest weighted degree (LWD): in this heuristic, 
priority is given to the course that has the largest 
weighted conflict. Each conflict is weighted based 
on the number of students involved in two 
conflicting courses.  
Random ordering (RO): the courses that are not 
yet scheduled are selected randomly. 
Color degree (CD): in this heuristic that is a 
dynamic heuristic, the courses are ordered in terms 
of the number of conflict that they have with those 
already scheduled in the timetable.  
Saturation degree (SD): in this dynamic heuristic, 
the next selected course to be scheduled is based on 
the number of available feasible timeslots. The 

course with the least number of available feasible 
timeslots will be scheduled first. 
 
 
4 The Utilized Algorithms 
4.1 The GAs 
A GA starts by creating a random population of 
chromosomes, called initial population, and then 
these chromosomes are evaluated by the cost 
function and sorted in a decreasing order. Percent of 
chromosomes which are inferior to others are 
eliminated. Now two of remaining chromosomes are 
selected randomly to produce the offspring using 
crossover operator to replace the eliminated 
chromosomes. This reproduction (selection and 
crossover) continues, until the population reaches to 
its original size. The mutation operator is applied to 
the whole population of chromosomes with a 
mutation rate, commonly excluding the elite one. 
The resultant population is called the first 
generation. Again the cycle of evaluation, sorting, 
elimination, reproduction, and mutation continues 
until fulfilling one of stopping conditions. The 
different utilized operators in the GA for the course 
timetabling problem are as follow: 
Initialization: coding of a chromosome as a 
problem solution is the first step of applying the GA 
to a problem. In the UCTP, each solution must be 
simultaneously assign the associated timeslot and 
room of each course. Thus, in a direct 
representation, with assumption of N  courses, each 
chromosome will own a length equal to 2* N  genes 
that N  first-genes will assign timeslot of each 
course and N  second-genes will assign room of 
each course. Fig. 1 shows an example of such a 
chromosome with 10 courses, 5 timeslots and 4 
rooms. For example this chromosome represents 
that 1st course must occur at 1st  timeslot in 3rd 
room, 2nd course must occur at 2nd timeslot in 2nd 
room and so on. Also every generated chromosome 
is evaluated using (1). 
Selection: for the selection operator, we use the 
roulette wheel method with reverse linear rank 
weighting probability proposed in [69]. 
Crossover: in the crossover stage, two selected 
chromosomes in the selection stage are combined 
together to generate a new offspring. Each offspring 
has two sets of genes: those of genes are exactly 
copied from its parents and those of genes are 
exclusively generated for it. So each crossover 
method must present a strategy to copy genes from 
parents and an operator to generate new independent 
genes. The classic crossover operators, such as 
uniform and n-point crossover, can easily lead to  
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t5 t2 t2 t4 t4 t3 r3 r2 r2 r4 r1 r1

Timeslot Room

t1 t2 t1 t3 r4 r3 r4 r1
 

Fig 1.  An example of chromosome coding for course timetabling problem. 

Parent 1

Parent 2

Unperfect 
Offspring

Perfect 
Offspring

unscheduled courses
to schedule 

unscheduled courses

t5 t2 t2 t4 t4 t3 r3 r2 r2 r4 r1 r1t1 t2 t1 t3 r4 r3 r4 r1

t2 t5 t2 t3 t2 t1 r1 r4 r3 r2 r3 r1t3 t4 t4 t3 r4 r3 r2 r2

unscheduled courses

t4 t3 r3 r2t1 t2 r4 r1

t1 t3 t3 t4 t4 t3 r3 r2 r2 r1 r1 r4t1 t2 t5 t2 r3 r2 r4 r1

 
Fig 2.  An example of 2 staged n-point crossover. 

 
infeasible timetables. On the other word, the classic 
crossover methods are applied on feasible solutions 
but generate infeasible solutions. In order to avoid 
infeasible solutions, some of literature did not use 
the crossover and employed only the mutation 
operator to generate new solutions (see [70] and 
[71]). Some of other literature to preserve the 
feasibility of the timetables and to guarantee 
feasible timetables used a repair mechanism. This 
mechanism must be applied on infeasible solutions 
to reintroduce all the necessary courses (see [72] 
and [73]). This research, as a third approach, 
proposes a new crossover method called 2-staged n-
point crossover (2SNPC) by combination of n-point 
crossover and graph colouring heuristics. This 
crossover method by applying to feasible solutions, 
with a high probability, leads to a feasible offspring.  
In the 2SNPC crossover method, the n-point 
crossover is used to copy genes from parents and 
graph colouring heuristics are employed to generate 
new independent genes. Fig. 2 shows an example of 
2SNPC. In the first stage of 2SNPC method, the 
first set of genes (both timeslots and rooms) are 
copied from first parent to the offspring and to copy 
second set of genes from second parent to the 
offspring, feasibility of this assignment is checked. 
If assignment of a gene (timeslot or room) from 
every parent generates a conflict, this set of genes in 
this stage is not assigned any value (no timeslot and 
no room) and will be scheduled in second stage. 
These unscheduled genes are denoted with value of 
zero in Fig. 2. In the second stage of 2SNPC 
method, to schedule the unscheduled courses, the 
graph colouring heuristics will be used. First the 

unscheduled courses will be ordered decreasingly in 
terms of difficulty degree of scheduling which is 
defined by graph colouring heuristic. Then 
scheduling is begun from course with highest 
priority and a random feasible timeslot and room are 
assigned to unscheduled courses. For each course, if 
any feasible timeslot or room is not found, a random 
value will be assigned to it. 
Mutation: the mutation operator also uses graph 
colouring heuristics. Firstly a chromosome is 
selected with a probability of chr prob−  and then a 
set of genes from this selected chromosome will be 
selected with a probability of gene prob− . These 
unscheduled courses will be ordered decreasingly by 
graph colouring heuristics and the scheduling is 
begun from course with highest priority. Then a 
random feasible timeslot and room are assigned to 
unscheduled courses. Also, if any feasible timeslot 
or room was not found then a random value will be 
assigned.  
Termination criterion: the GA continues until 
fulfils a given number of function evaluations. 
 
 
4.2 The PSO 
In contrast to the GAs which used evolutionary 
operators (selection, crossover and mutation) to 
generate and improve new candidate solutions, the 
PSO simply assigns a velocity vector to each 
member of population called particle, and updates 
the velocity of the members without generation of a 
completely new member. In the PSO each particle 
based on its previous position, its best position 
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achieved so far and the best position achieved by all 
particles adjusts its flying.  
According to above discussion, the PSO is 
formulated as follow: denote attributes of each 
particle i  ( , 2,...,i = 1 Npop  and Npop  is population 
size) in the D-dimensional search space and 
iteration t  is represented as follow: the current 
position of particle represented as 

t t t t
i i1 i2 iDX = (x , x ,... , x ) , the current velocity of 

particle represented as t t t t
i i1 i2 iDV = (v ,v ,... ,v ) , the 

current personal best position of particle represented 
as t t t t

i i1 i2 iDP = (p , p ,... , p )  and the global best 
position represented as t t t t

1 2 DG = (g , g ,... , g ) . Thus 
the particle i  at dimension j  and iteration t  
updates its velocity and position based on its 
cognition part and the social part according to Eqs. 
(2) and (3) respectively. 

1 1 1 1 1 1
1 1 2 2( ) ( )t t t t t t t

ij ij ij ij j ijv v c r p x c r g xω − − − − − −= + − + − (2 
1t t t

ij ij ijx x v−= +      (3) 
where ω  is the inertia weight factor that adjusts the 
weighting of previous velocity in the current 
velocity; 1r  and 2r  are two random values with 
uniform distribution in the interval [0,1], 1c  and 2c  
are learning factors. These two parameters specify 
tendency of particle to its own experiences or 
collective consequences.  
The UCTP is a discrete optimization problem but 
standard PSO equations (Eqs. (2) and (3)) are suited 
for continuous optimization. To apply the PSO to 
the course timetabling problem, we used a structure 
proposed in Pan et al. [74]). They to apply the PSO 
on no-wait flowshop scheduling problem, proposed 
a new position update method for particles based on 
discrete permutations. They generated a new 
particle in three stages: one mutation and two 
crossover stages. Thus the position of particle i  at 
iteration t  can be updated as follow: 

1 1
2 3 1 2 1( ( ( ) , ) , )t t t

i i i iX c F c F F X P Gω − −= ⊗ ⊗ ⊗  (4) 
The update equation consists of three components: 
the first component is 1( )1

t tF Xi iλ ω −= ⊗ , 1F  
represents the mutation operator with the probability 
of ω . The second component is 

1
1 2 ( , )t t t

i i ic F Pδ λ −= ⊗ , 2F  represents the crossover 
operator with the probability of 1c . The third 
component is 3 3( , )t t t

i iX c F Gδ= ⊗ , 3F  represents 
the crossover operator with the probability of 2c . So 
the position of a particle is updated by using a 
mutation with the probability of ω , a crossover with 

the probability of 1c  and a another crossover with 
the probability of 2c . This strategy is used to apply 
the PSO to UCTP. 
 
 
4.3 The GAPSO 
We combine the GA with the PSO and produce a 
new global search algorithm called GAPSO. This 
proposed hybrid algorithm has a simple structure. 
The GAPSO serially applies two global search 
methods on a population. Each algorithm will be 
applied on improved members of another algorithm. 
The steps of GAPSO are as follow:  
Step1: Generate initial population of size popN . 
Step2: Apply the GA to population for (Max1) 
iterations. 
Step3: Apply the PSO to population for (Max2) 
iterations. 
Step4: Check the stopping criteria, if are not met go 
to Step2 and repeat the algorithm.  
The hybrid algorithms start by generation of an 
initial random population. Then the GA is applied to 
them with a predefined number of iterations (Max1). 
In simple words, in each iteration of algorithm, the 
GA receives the population, improves them and 
renders them to the PSO as its initial population. 
Later, the PSO method is applied to the population 
with a predefined maximum iteration number 
(Max2). Finally the termination criteria are checked 
and the algorithm is repeated until fulfilling one of 
the termination criteria. 
 
 
4.4 The Hybridizing Global Search 
Algorithms and LS Method 
In order to improve the performance of global 
search algorithms, a LS method is applied on 
obtained solutions of them. The steps of hybrid 
algorithms are as follow:  
Step1: Generate initial population of size popN . 
Step2: Apply the global search algorithm to 
population for (Max3) iterations. 
Step3: Apply the LS to population for (Max4) 
iterations. 
Step4: Check the stopping criteria, if are not met go 
to Step2 and repeat the algorithm.  
This hybridizing method is applied to the GA, PSO 
and GAPSO global search algorithms and three 
hybrid algorithms are obtained which are called 
HGA, HPSO and HGAPSO, respectively. All 
hybrid algorithms follow the aforementioned steps. 
Their single difference is in the Step2. The HGA 
uses the GA as global search algorithm in this step.  
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1. Select a gene with a probability of local prob ;
2. Assign a feasible value for selected gene

and generate new chromosome ( Xnew );
3. if f ( Xnew ) f ( X )

replace X with Xnew ;
else

do not change X ;
4.Go to step1 and repeat steps ( 1 3 )

for other ge

−

<

−
nes of chromosome ( X );

 

Fig. 3.  The stages of proposed local search method for each 
chromosome. 

The PSO is used in the HPSO as a global search 
algorithm in this step. The HGAPSO employs the 
GAPSO as global search algorithm. 
Also for the LS, we use a simple method similar to 
HC. The HC algorithm iteratively evaluates some of 
neighbouring solutions and replaces the current 
solution by the candidate solution which results in 
the largest increase in the solution quality. The 
stages of this proposed LS method for each member 
are shown in Fig. 3. 
 
 
5 Experimental Results 
The proposed algorithms are tested on eleven 
benchmark course timetabling problems, proposed 
by the Metaheuristic Network1. The problems2 need 
to schedule 100–400 courses into a timetable with 
45 timeslots (5 work days and 9 timeslots a day), 
while satisfying room features and capacity 
constraints. These databases are divided into three 
groups: Small, Medium and Large. Specifications of 
these databases are shown in Table 1. Every 
algorithm was run 10 times and 1000000 function 
evolutions for Small databases, 1200000 function 
evolutions for Medium and Large databases was 
considered as stopping criterion, respectively. The 
performance of different algorithms was compared 
using two criteria: (i) the average value of the 
solution obtained in all trial runs (mean), (ii) the 
minimum value of the solutions obtained in all trial 
runs (min). The considered values for different 
parameters of algorithms are as follow:  
• size of initial population equal to 60; 

• number of crossover points equal to N
3

 that N  is 

number of courses; 

1 http://www.metaheuristics.net/. 
2 http://iridia.ulb.ac.be/~msampels/ttmn.data/. 

• the GA parameters (ω ,chr prob− , gene prob− ) 
equal to 0.1and 0.2, respectively;  

• the PSO parameters (ω , 1c , 2c ) equal to 0.3, 0.8 
and 0.8, respectively; 

• the GAPSO parameters (Max1, Max2) equal to 20 
and 20, respectively; 

• the LS parameters ( local prob− , Max4) equal to 
0.4 and 3, respectively; 

•  the value of Max3 in the HGA, HPSO and 
HGAPSO equal to 5, 5 and 1, respectively. 

To generate the initial population, we used a 
feasible assignment by starting from an empty 
timetable. In this initializing method, for each 
course, a random timeslot and room is selected and 
if theses assigned values were feasible, those will be 
accepted. Also if any feasible timeslot and room 
were not found, a random assignment will be 
considered. The experiments on 1000 random 
members generated using this initializing method 
show that this method on Small databases generates 
completely feasible solutions. But on Medium1, 
Medium2, Medium3, Medium4, Medium5 and Large 
databases averagely leads to 43, 46, 109, 35, 262 
and 491 infeasible assignments, respectively. Also 
the term ‘‘x% Inf’’ in some of this section tables 
indicates the percentage of runs which associated 
algorithm failed to obtain feasible solutions. 
 
 
5.1 Decision on proposed algorithms 
The proposed evolutionary operators, i.e. crossover 
and mutation, use the graph colouring heuristics to 
order unscheduled courses. Table 2 shows a 
comparison among performance of different 
heuristics in the GA on 4 databases. From results of 
Table 2 we can observe that on Small1, the LWD 
and LD heuristics obtain the best minimum and 
mean cost, respectively. On this problem, the RO 
has the worst performance. On Small2, the LE and 
CD heuristics have the best minimum and mean 
cost, respectively. Also the RO obtains the worst 
performance. On Medium1, the SD gives a better 
minimum cost and the LD has a better mean cost. 
For problem Medium2, the LE and SD heuristics 
give the best minimum and mean cost, respectively. 
The obtained results of Table 2 demonstrate that for 
all of the problems tested, the GA with different 
heuristics finds feasible solutions. Also the RO 
heuristic, that is random ordering of unscheduled 
courses, obtains the worst performance on all 
problems except on Medium1 and Medium2 in terms 
of mean cost. But it is evident that, among other 
heuristics, no heuristic obtained significantly better  
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Table 2. A comparison among performance of different graph colouring heuristics in the GA on 4 databases 

Graph heuristic  Small1  Small2  Medium1  Medium2 
 min  mean  min  mean  min  mean  min  mean 

RO  14  17.9  15  21.3  215  244.7  227  250.2 
LE  12  17.6  10  18.7  212  248.1  217  241.6 
LD  9  14.5  11  19.3  205  236.5  227  254.6 

LWD  7  15.3  12  17.2  203  249  224  248.3 
CD  9  14.7  12  16.9  211  241.1  223  243.2 
SD  8  14.8  11  17.2  197  239.5  219  240.6 

 
Table 3. A comparison among non-hybrid global search algorithms. 

Database  GA  PSO  GAPSO 
 min  mean  min  mean  min  mean 

Small1  6  12.8  11  20  8  15.7 
Small2  8  15.2  11  24.8  9  16.7 
Small3  7  15.3  9  16.4  7  16.1 
Small4  8  15  10  16.3  8  17.6 
Small5  3  7.5  6  13  4  7.3 

Medium1  187  221.1  225  289.5  198  240.9 
Medium2  202  240.6  284  314.2  242  302.2 
Medium3  252  317.2  321  370.4  286  338.4 
Medium4  224  274.5  280  337  240  285.5 
Medium5  268  308.5  -  100% Inf   260  311.2 

Large  -  100% Inf   -  100% Inf   -  100% Inf  
 
performance. 
Table 3 shows a comparison of the PSO, the GA 
and the GAPSO results based on 11 university 
course timetabling databases. The best results were 
highlighted. The obtained results demonstrate that 
the GA has a better performance than two other 
global search algorithms in terms of both considered 
aspects, except on Small5 that the GAPSO has a 
better average result. Also the PSO can not find any 
feasible timetable on Medium5 and all algorithms 
obtain infeasible timetables on Large database.  
The experimental results after applying LS method 
on global search algorithms are shown in Table 4. In 
comparison with results of Table 3, hybridizing can 
improve the quality of solutions. All hybrid 
algorithms outperform their non-hybrid competitors 
in Table 3. However, the GA had the best results 
among non-hybrid global search algorithms in Table 
3, the HGAPSO obtains the best results among 
hybrid algorithms on all databases, except on 
Medium5. Also the HPSO algorithm, such as PSO in 
Table 3, has the worst performance among hybrid 
algorithms.  
It is clear from Tables 3 and 4 that the GA and the 
HGAPSO are two superior non-hybrid and hybrid 

algorithms which give the best results than other 
algorithms. 
 
 
5.2 Comparison with previous studies 
Table 5 compares results of the GA and HGAPSO 
which were the best non-hybrid and hybrid 
algorithms, and three other hyper-heuristic 
approaches proposed in literature. The utilized 
studies include: 
• The GHH upon six heuristics [15].  
• The TS hyper-heuristic (TSHH) [75].  
• The fuzzy multiple heuristic (FMH) [76]. 
Results of Table 5 clearly evident the promising 
results of our proposed methods. The GA has a 
better performance than the GHH, the TSHH and 
the FMH on 5, 2 and 7 problems, respectively. Also 
the HGAPSO has a better performance than the 
GHH, the TSHH and the FMH on 9, 4 and 9 
problems, respectively. Based on this comparison, 
The HGAPSO obtains the best results on 6 problems 
and the second-best results on 3 other problems. 
Thus by considering the HGAPSO as a hybrid 
hyper-heuristic, it is one of the best strategies for 

Table 1. Specifications of the utilized database 
category  Small  Medium  Large 

Number of courses  100  400  400 
Number of rooms  5  10  10 
Number of features  5  5  10 
Number of students  80  200  400 
Maximum courses per student  20  20  20 
Maximum student per courses  20  50  100 
Approximate feature per room  3  3  5 
Percent feature use  70  80  90 
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Table 4. A comparison among hybrid global search algorithms. 

Database  HGA  HPSO  HGAPSO 
 min  mean  min  mean  min  mean 

Small1  2  5  4  6.4  0  1.2 
Small2  3  5.6  5  7.8  1  2.4 
Small3  2  6.6  3  6.2  0  1.9 
Small4  3  5.6  3  6.8  1  3.8 
Small5  0  1.4  1  1.8  0  0.8 

Medium1  178  196.2  184  204.2  175  184.4 
Medium2  191  205.3  198  210.7  184  196.1 
Medium3  212  224.7  221  238.2  205  218.2 
Medium4  174  191.4  190  208.3  176  192.5 
Medium5  201  214.8  312  50% Inf   180  194.8 

Large  -  100% Inf   -  100% Inf   -  100% Inf  
 
 
 
 
 
 
 
 
 
 
 
 
 
hyper-heuristic systems on the UCTP. Also the GA 
obtains a competitive performance with GHH, LS 
and fuzzy multiple heuristic approaches. It 
outperforms the GHH and fuzzy multiple heuristic 
approaches on all Medium databases, except 
Medium5. 
Table 6 compares results of the GA and HGAPSO 
and eleven other EAs proposed in literature. The 
utilized studies include: 
• The LS [29]. 
• The ant algorithm (Ant) [29]. 
• The DCABA [76]. 
• The randomized iterative (RI) [52]. 
• The EGSGA [63]. 
• The NLGD [34]. 
• The GAWLS [64]. 
• The HEA Abdullah et al [65]. 
• The HGA [32]. 
• The VNS-Tabu [51] 
• The MA [66]. 
(Note: the reported results for LS and Ant algorithm 
are average of obtained results, but the reported 
results for other approaches are the best results).  
The GA obtains a better performance than the Ant, 
DCABA, RI, LS, EGSGA, NLGD, GAWLS, HEA, 
HGA, VNS-Tabu and MA on 1, 0, 2, 9, 0, 0, 4, 1, 2, 
5 and 1 problems, respectively. Also the HGAPSO 
obtains a better performance than the Ant, DCABA, 
RI, LS, EGSGA, NLGD, GAWLS, HEA, HGA, 
VNS-Tabu and MA on 6, 5, 3, 10, 0, 4, 9, 2, 6, 5 

and 3 problems, respectively. The performance of 
the HGAPSO on Small1, Small3 and Small5 is in 
the range of the best algorithms. It also has the 
second-best results on two other Small databases. 
There are 5 hybrid algorithms in this comparison 
which are a combination of GA and another LS, i.e. 
EGSGA, GAWLS, HEA, HGA and MA. Among 
these algorithms, the HGAPSO obtains the best 
results on Small1, Small3 and Small5 problems and 
the second-best results on Small2, Small4, Medium1 
and Medium3 problems. Also the EGSGA has a 
considerably better performance than other 
algorithms.  
So in an overall view, the HGAPSO method obtains 
a competitive performance on Small and Medium 
databases, however it leads to an infeasible solution 
on Large database. 
 
 
6 Conclusion and future works 
The overall goals and the obtained results of this 
paper were as follow:  
1. There was not any efficient crossover method for 
the UCTP, thus more of literatures which used the 
GA for this problem, have withdrawn from 
crossover or have used a repair mechanism to 
modify infeasible solutions generated by classic 
crossover methods. This paper proposed a new 
crossover method called 2SNPC, by combination of 
classic n-point crossover and graph colouring 

Table 5. The best results obtained by our proposed algorithms, i.e. the GA and HGAPSO, and 
other hyper-heuristic methods. 
Database GA HGAPSO GHH TSHH FMH 
Small1 6 0 6 1 10 
Small2 8 1 7 2 9 
Small3 7 0 3 0 7 
Small4 8 1 3 1 17 
Small5 3 0 4 0 7 

Medium1 187 175 372 146 243 
Medium2 202 184 419 173 325 
Medium3 252 205 359 267 249 
Medium4 224 176 348 169 285 
Medium5 268 180 171 303 132 

Large 100% Inf 100% Inf 1068 80% Inf 1166 1138 
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heuristics. The GA using this crossover method 
obtained some competitive results than other 
proposed methods.  
2. In this paper, to improve the obtained solutions 
by non-hybrid algorithms, a LS based on HC 
method was applied to three global search 
algorithms i.e. the GA, the PSO and the GAPSO and 
three hybrid algorithms were obtained i.e. the HGA, 
the HPSO and the HGAPSO. 
3. Experimental results on 11 well-known 
benchmark problems demonstrated that among 
compared non-hybrid algorithms, the GA obtained 
the best results and outperformed the PSO and the 
GAPSO algorithms. Also to the best of our 
knowledge, the obtained results of GA were the first 
reported results on these databases in the literatures 
which were competitive with results of other 
approaches. Also among hybrid algorithms, the 
HGAPSO gives the best results.  
4. In final part of comparison study, a comparison of 
our proposed algorithms with some approaches 
reported in the literature was carried out. The 
obtained results demonstrated that by considering 
the HGAPSO as a hybrid hyper-heuristic, it was one 
of the best strategies for hyper-heuristic systems on 
the UCTP proposed so far. Also results of the 
HGAPSO in comparison of other hybrid algorithms 
proposed in the literature were completely 
comparable.  

However our proposed algorithms obtained a 
comparable performance than other proposed 
approaches, but those did not find any feasible 
solution on Large database. This infeasible solution 
is due to initialization stage that leads to a huge 
number of infeasible assignments on this database. 
For the future work, it might be interesting to 
employ and examine some efficient initialization 
methods that generate less infeasible assignments. 
Also in crossover and mutation stage, we used a 
single and same graph colouring heuristic. It might 
also be interesting to employ more than one and 
different heuristics when assigning the unscheduled 
courses. 
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